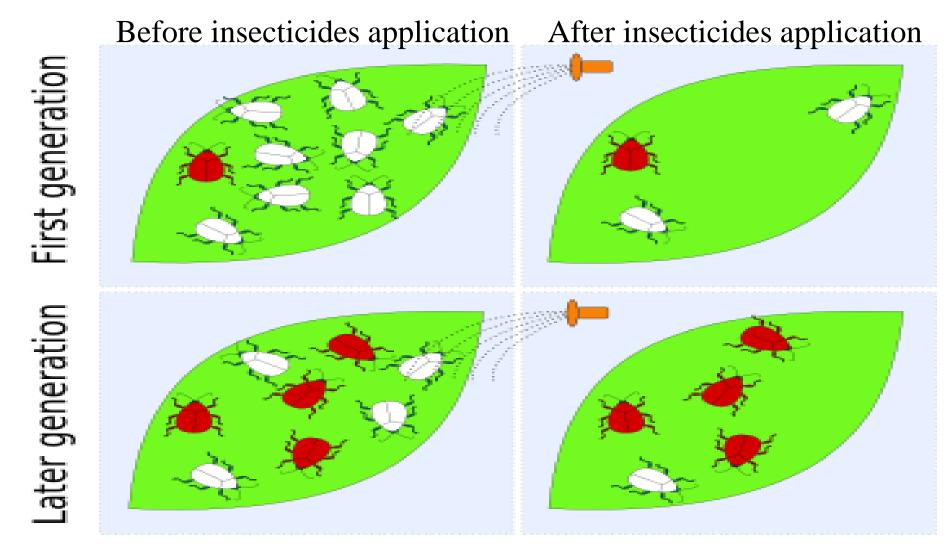
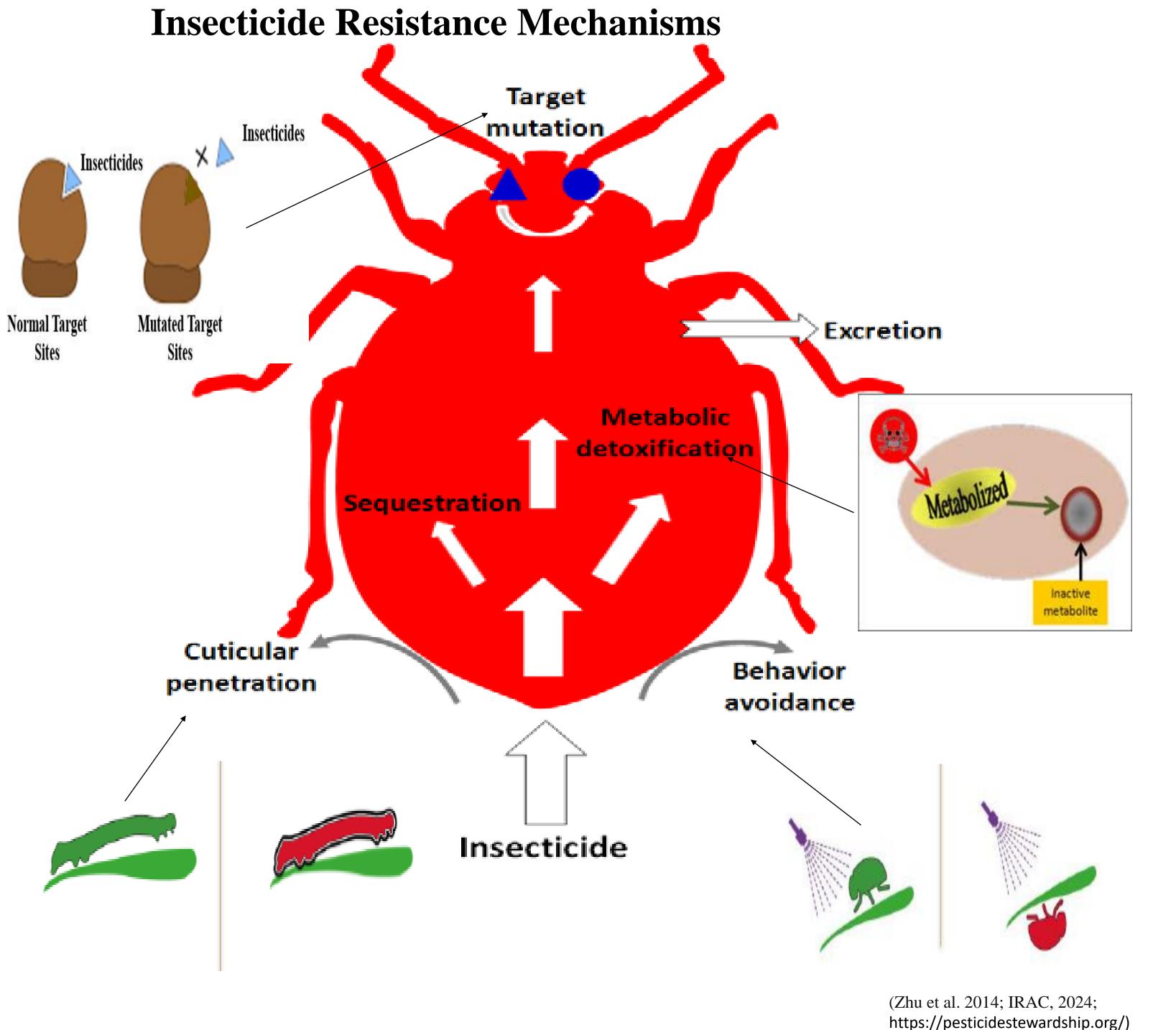


Insecticide Resistance: A Major Concern in Insects-pests Control

Rameshwor Pudasaini and Shu-Mei Dai


Department of Entomology, National Chung Hsing University, Taichung 40227, Taiwan (R.O.C.)


- Insecticides work through various mechanisms to kill insects such as neurotoxicity, impaired growth, respiratory inhibition, midgut interference, and chitin synthesis inhibition.
- Over time populations of insects can evolve to become less responsive to the insecticide that is used to control them.
- When insect population can no longer be controlled by a dose of insecticide which used to provide control of them is known as insecticide resistance.

What Causes Insecticide Resistance?

Continuous selection pressure of insecticides

https://en.wikipedia.org/

Behavior avoidance \rightarrow Insect can detect and avoid insecticides.

Cuticular penetration → Cuticle become thick or create barrier to prevent entering insecticides inside body.

Sequestration → Store toxins before reaching to target sites within insect bodies

Excretion → Ability of insects to efficiently eliminate toxic substances from their bodies

Metabolic detoxification → Toxic substances become detoxify before reaching target sites.

Target-site modification → Target sites become mutated so that insecticide can't bind the sites.

Insecticide Resistance Profiles in Different Arthropods

Table 1. The most resistance arthropods based on the number of resistance insecticides (APRD, 2022)

msecucides (Til RD, 2022)					
S. N.	Insect species	Pest type	Resistance		
			insecticides (N)		
1	Diamondback Moth (Plutella xylostella)	Crops	101		
2	Red spider mite (Tetranychus urticae)	Crops	96		
3	Green peach aphid (Myzus persicae)	Crops	81		
4	Whitefly (Bemisia tabaci)	Crops	65		
5	House Fly (Musca domestica)	Medical	65		
6	Colorado potato beetle (Leptinotarsa	Crops	56		
	decemlineata)				
7	Cotton bollworm (Helicoverpa armigera)	Crops	52		
8	Tick (Rhipicephalus microplus)	Medical	50		
9	European Red Mite (Panonychus ulmi)	Crops	48		
10	Beet armyworm (Spodoptera exigua)	Crops	43		

Insecticide Resistance Issues in Taiwan

Table 2. Insect species with number of insecticides resistance reported in Taiwan

Taiwaii						
S.N.	Insect species	Resistance	References			
		insecticides (N)				
1	Diamondback moth	>22 (Indoxacarb,	Pudasaini et al. 2022, Hsu			
	(Plutella xylostella)	Chlorantraniliprole,	et al. 2016, Hsu et al. 2012,			
		Spinosad)	Liu et al. 1981			
2	Oriental fruit	> 10 (Naled)	Hsu et al. 2016, Hsu et al.			
	fly (Bactrocera		2004, Kuo et al. 2015, Hsu			
	dorsalis)		et al. 2008			
3	House flies (Musca	10 (Cypermethrin,	Pai et al. 2023			
	domestica)	Chlorpyrifos)				
4	Mosquitoes (Aedes	> 9 (Cypermethrin,	Pai et al. 2023			
	albopictus)	Permethrin)				
5	Mosquitoes (Aedes	6 (Cypermethrin,	Pai et al. 2023, Chun et al.			
	aegypti)	Fipronil	2022, Chang et al. 2012			
6	Brown planthopper	5 (Malathion,	Sun et al. 1984			
	(Nilaparvata lugens)	Permethrin)				
7	Pink stem borer	2 (Spinosad,	Li et al. 2011			
	(Sesamia inferens)	Permethrin)				
8	Striped rice stem borer	2 (Carbofuran,	Cheng et al. 2010			
	(Chilo suppressalis)	cartap)				
9	German cockroach	2 (Permethrin,	Pai et al. 2023			
	(Blattella germanica)	Fipronil)				
10	American cockroach	1 (Fipronil)	Pai et al. 2023			
	(Periplaneta					
	americana)					

How to Manage Insecticide Resistance?

- Regularly monitoring of insect-pests and follow economic thresholds levels.
- Follow Integrated Pest Management (IPM)approach
- Apply insecticides correctly and follow recommendation guidelines properly.
- IRACC
 Insecticide Resistance Action Committee

 Mode of Action Classification

 | Part |
- Follow alternations, rotations, or sequences of different insecticide mode of action classes
- Preserve susceptible genes

(IRAC, 2024)

Conclusions

❖ Insecticide resistance poses a significant challenge in insect pests control, therefore, it is essential to implement proper strategies for effective pest control and insecticide resistance management.